
COMP 520 - Compilers

Lecture 03 – Compiler Theory and Formal
Analysis

1

Annoucements

PA1 autograder is live on Gradescope

Entry code: PWBK78

PA1 submission instructions posted on Piazza

2
COMP 520: Compilers – S. Ali

More Announcements

The autograder is built upon Gradescope’s recommendations.

The autograder does not accept filenames and folders that
contain spaces (or tabs or other whitespace) in them.

(Your file can contain whitespace, but not the filename)

Please be cautious when uploading your source files to the
autograder (name appropriately!)

3
COMP 520: Compilers – S. Ali

Good Questions!

• Lexer is responsible for building the language’s Lexicon

• Some languages require a more robust Lexer
• Recall C++ example from Lec02

• So what tokens are generated from the following?

6234432whileclass

4
COMP 520: Compilers – S. Ali

When to use the Graph method?

• Primarily if you need to prove that your TokenKind/TokenType
represents the CFG.

• Reducing the number of TokenTypes makes it easier on the Parser
even if the types must be manually differentiated later when
analyzing context/generating code. (And when that happens, it is
usually still easier to have a condensed set of TokenTypes).

• But making things easier requires you to prove your method still
adheres to the targeted language.

5
COMP 520: Compilers – S. Ali

What to expect

• Lecture01- Intro to the course, grading structure, expectations.

• Lecture02- Massive content drop, prepares you for PA1 as early as
possible to give you time to complete the assignment.

6
COMP 520: Compilers – S. Ali

What to expect

• Lecture01- Intro to the course, grading structure, expectations.

• Lecture02- Massive content drop, prepares you for PA1 as early as
possible to give you time to complete the assignment.

• From here on out, we can breathe a sigh of relief and slow down.

• We described what needs to be done in code but haven’t formally
described how parsing is done.

• So now we can shift back towards the science part of compilers!

7
COMP 520: Compilers – S. Ali

Lecture03

Let’s get formal and describe Compilers in a way that
cannot be misrepresented!

8
COMP 520: Compilers – S. Ali

Context-Free Grammar
A review, and new Compiler-specific definitions

9
COMP 520: Compilers – S. Ali

CFGs for Compilers

• The CFG, 𝐺, consists of:
• 𝑁: Set of nonterminal symbols (elements start with an uppercase)

• 𝑇: Set of terminal symbols (elements start lowercased)

• A start symbol where start ∈ 𝑁
• A set of rewrite rules of the form A ::= α where

• A ∈ 𝑁

• α is a sequence of T ∪ N or ε (empty sequence)

10
COMP 520: Compilers – Jan Prins, S. Ali

Formal Definition Review

• The CFG, 𝐺, consists of:
• 𝑁: Set of nonterminal symbols (elements start with an uppercase)

• 𝑇: Set of terminal symbols (elements start lowercased)

• A start symbol where start ∈ 𝑁
• A set of rewrite rules of the form A ::= α where

• A ∈ 𝑁

• α is a sequence of 𝑇 ∪ 𝑁 or ε (empty sequence)

• (𝛼 sequence is a T∪N of fun to parse!)

• PAUSE!

11
COMP 520: Compilers – Jan Prins, S. Ali

Sentence Definition

• A sentence 𝑤 consists exclusively of terminal symbols

• Consider a start symbol 𝑆 where 𝑆 = 𝛼1

• We will say that 𝛼𝑖 ⇒ 𝛼𝑖+1 (𝛼𝑖 yields 𝛼𝑖+1) if…
• When W ::= 𝜔 is a rule in 𝐺

• When 𝛽, 𝛾, 𝜔 (beta, gamma, omega) are sequences
𝑎𝑖 ⇒ 𝛼𝑖+1 → (𝛼𝑖 = 𝛽W𝛾) ∧ (𝛼𝑖+1 = 𝛽𝜔𝛾)

12
COMP 520: Compilers – Jan Prins, S. Ali

Sentence Definition

• A sentence 𝑤 consists exclusively of terminal symbols

• Consider a start symbol 𝑆 where 𝑆 = 𝛼1

• We will say that 𝛼𝑖 ⇒ 𝛼𝑖+1 (𝛼𝑖 yields 𝛼𝑖+1) if…
• When W ::= 𝜔 is a rule in 𝐺

• When 𝛽, 𝛾, 𝜔 (beta, gamma, omega) are sequences
𝑎𝑖 ⇒ 𝛼𝑖+1 → (𝛼𝑖 = 𝛽W𝛾) ∧ (𝛼𝑖+1 = 𝛽𝜔𝛾)

• The sentence 𝑤 is generated when
• 𝛼1 ⇒ 𝛼2 ⇒ ⋯ ⇒ 𝛼𝑛 where 𝛼𝑛 = 𝑤

13
COMP 520: Compilers – Jan Prins, S. Ali

Context-Free Language

• L(G) is the set of ALL sentences generated by G
𝐿 𝐺 = {𝑤|𝑤 ∈ 𝑇∗ and 𝑆 ⇒ 𝑤}

14
COMP 520: Compilers – Jan Prins, S. Ali

Context-Free Language

• L(G) is the set of ALL sentences generated by G
𝐿 𝐺 = {𝑤|𝑤 ∈ 𝑇∗ and 𝑆 ⇒ 𝑤}

• Example: What sentences are generated by this CFG?

S ::= A $

A ::= (A)

A ::= x

(Terminals are in orange)

15
COMP 520: Compilers – Jan Prins, S. Ali

Leftmost Derivation

16
COMP 520: Compilers – S. Ali

Leftmost Derivation

• Leftmost derivation can generate any sentence in L(G)

• Only modify our sentence generation rules slightly.

• We will say that 𝛼𝑖 ⇒ 𝛼𝑖+1 if…
• When W ::= 𝜔 is a rule in 𝐺

• When 𝛽, 𝛾, 𝜔 (beta, gamma, omega) are sequences

• Additional Rule: 𝛽 consists of zero or more terminal symbols

𝑎𝑖 ⇒ 𝛼𝑖+1 → (𝛼𝑖 = 𝛽W𝛾) ∧ (𝛼𝑖+1 = 𝛽𝜔𝛾)

17
COMP 520: Compilers – Jan Prins, S. Ali

Let’s simulate top-down parsing
using a pushdown automaton
and leftmost derivation!

18
COMP 520: Compilers – S. Ali

Top-down Parsing

• A top-down parser simulates leftmost derivation!

• Create a parse stack that contains the start symbol S:

19
COMP 520: Compilers – Jan Prins, S. Ali

S

Parse
Stack

Top-down Parsing

Create a parse stack that contains the start symbol S:

1) Read the input, w, left-to-right

20
COMP 520: Compilers – Jan Prins, S. Ali

S

((x)) $
Input

Parse
Stack

Top-down Parsing

1) Read the input, w, left-to-right

2) If the top of the parse stack is a
terminal 𝑏, pop 𝑏 from the stack

21
COMP 520: Compilers – Jan Prins, S. Ali

S

((x)) $
Input

Parse
Stack

Top-down Parsing

1) Read the input, w, left-to-right

2) If the top of the parse stack is a
terminal b, pop b from the stack

3) If the top is a non-terminal..
- Need to predict the correct rule A ::= 𝛼 from 𝐺

- Pop A and push 𝛼

22
COMP 520: Compilers – Jan Prins, S. Ali

S

((x)) $
Input

Parse
Stack

Top-down Parsing

• Create a parse stack that contains the start symbol S:

1) Read the input, w, left-to-right

2) If the top of the parse stack is a
terminal 𝑏, pop 𝑏 from the stack

3) If the top is a non-terminal..
- Need to predict the correct rule A ::= 𝛼 from 𝐺

- Pop A and push 𝛼

4) Repeat until parse stack is empty
or the input is exhausted

23
COMP 520: Compilers – Jan Prins, S. Ali

S

((x)) $
Input

Parse
Stack

What does this look like in
practice?

24
COMP 520: Compilers – S. Ali

Top-down Parsing

25
COMP 520: Compilers – Jan Prins, S. Ali

S
((x)) $

Input

Parse
Stack

Stack contains
Terminal?

Parser

S ::= A $
A ::= (A)
A ::= x

Rules

Top-down Parsing

26
COMP 520: Compilers – Jan Prins, S. Ali

A
((x)) $

Input

Parse
Stack

No,
in S ::= A $

Parser

S ::= A $
A ::= (A)
A ::= x

Rules

$

Top-down Parsing

27
COMP 520: Compilers – Jan Prins, S. Ali

(
((x)) $

Input

Parse
Stack

No,
in A ::= (A)

Parser

S ::= A $
A ::= (A)
A ::= x

Rules

$

A

)

Top-down Parsing

28
COMP 520: Compilers – Jan Prins, S. Ali

(
((x)) $

Input

Parse
Stack

Yes,
Read in a (

Parser

S ::= A $
A ::= (A)
A ::= x

Rules

$

A

)

Top-down Parsing

29
COMP 520: Compilers – Jan Prins, S. Ali

(
((x)) $

Input

Parse
Stack

Done reading (
Repeat…

Parser

S ::= A $
A ::= (A)
A ::= x

Rules

$

A

)

(
POP!

Final Rule

Input 𝑤 ∈ 𝐿 𝐺 if

the stack is _____

(and/or)

the input is ______

30
COMP 520: Compilers – S. Ali

Final Rule

Input 𝑤 ∈ 𝐿 𝐺 if

the stack is EMPTY

AND

the input is EXHAUSTED

31
COMP 520: Compilers – S. Ali

Full Example when w=(x)$ and w ∈ 𝐿(𝐺)

32
COMP 520: Compilers – Jan Prins

Key ideas and Starter Sets

• Resolve choices in grammar rules by looking at the next symbol(s)
• A ::= (A)

• A ::= x

• Two choices for A. Which terminals appear at the start of each
choice?
• Starters of (A) = { (}

• Starters of x = { x }

33
COMP 520: Compilers – S. Ali

Key ideas and Starter Sets

• Resolve choices in grammar rules by looking at the next symbol(s)
• A ::= (A)
• A ::= x

• Two choices for A. Which terminals appear at the start of each
choice?
• Starters of (A) = { (}
• Starters of x = { x }

• Formally: when the starters are disjoint, we can always resolve the
choice by looking at the next input symbol

34
COMP 520: Compilers – Jan Prins, S. Ali

The LL(1) condition
Your new best friend!

35
COMP 520: Compilers – S. Ali

LL(1) Condition

• Guarantees that the parser can ALWAYS predict the correct
rule based on…
• The next (1) symbol

• When reading Left to right

• Using Leftmost derviation

36
COMP 520: Compilers – S. Ali

LL(1) Condition

• Guarantees that the parser can ALWAYS predict the correct
rule based on…
• The next (1) symbol

• When reading Left to right

• Using Leftmost derviation

• If your CFG is LL(1), you will make your compiler developer
quite happy.

• Question: Why?

37
COMP 520: Compilers – S. Ali

Recursive Descent Parsing

38
COMP 520: Compilers – S. Ali

Recursive Descent Parsing

• Implementation uses a lot of recursion!

• Each non-terminal gets a parseN() method where N is a non-terminal.

39
COMP 520: Compilers – Jan Prins, S. Ali

Recursive Descent Parsing

• Question: Where is the parse stack automatically maintained in
recursive descent parsing?

40
COMP 520: Compilers – Jan Prins, S. Ali

Recursive Descent Parsing

• Once again, 𝑤 ∈ 𝐿 𝐺 if
• Parse stack is empty AND w is exhausted

• Also explains why exception handling is useful here, it helps unwind
the stack to ensure your program can recover from syntax errors.

41
COMP 520: Compilers – S. Ali

Recursive Descent Parsing

• PA1 starter code lightly enforces this style (easy to change)

• Note: You do not have to do recursive descent (i.e., you can do the
PDA example from earlier)

• We recommend recursive descent parsing
• (A little easier to work with on your first compiler)

• True or False: any recursive algorithm can be rewritten as a non-
recursive algorithm? If so, what would that be for recursive descent?

42
COMP 520: Compilers – S. Ali

Enjoy your weekend!

• Make sure to start on PA1

• If you weren’t doing anything fun, something super exciting you
can work on:

Think about whether Java, miniJava, or other languages are LL(1)

• Apologies if I took over your weekend plans with the exciting prospect
above, parse responsibly!

• Next week: Grammar transformations, ENBF, and cool properties we
can exploit.

43
COMP 520: Compilers – S. Ali

End

44

45
COMP 520: Compilers – S. Ali

46
COMP 520: Compilers – S. Ali

47
COMP 520: Compilers – S. Ali

48
COMP 520: Compilers – S. Ali

	Slide 1: COMP 520 - Compilers
	Slide 2: Annoucements
	Slide 3: More Announcements
	Slide 4: Good Questions!
	Slide 5: When to use the Graph method?
	Slide 6: What to expect
	Slide 7: What to expect
	Slide 8: Lecture03
	Slide 9: Context-Free Grammar
	Slide 10: CFGs for Compilers
	Slide 11: Formal Definition Review
	Slide 12: Sentence Definition
	Slide 13: Sentence Definition
	Slide 14: Context-Free Language
	Slide 15: Context-Free Language
	Slide 16: Leftmost Derivation
	Slide 17: Leftmost Derivation
	Slide 18: Let’s simulate top-down parsing using a pushdown automaton and leftmost derivation!
	Slide 19: Top-down Parsing
	Slide 20: Top-down Parsing
	Slide 21: Top-down Parsing
	Slide 22: Top-down Parsing
	Slide 23: Top-down Parsing
	Slide 24: What does this look like in practice?
	Slide 25: Top-down Parsing
	Slide 26: Top-down Parsing
	Slide 27: Top-down Parsing
	Slide 28: Top-down Parsing
	Slide 29: Top-down Parsing
	Slide 30: Final Rule
	Slide 31: Final Rule
	Slide 32: Full Example when w=(x)$ and w element of cap L open paren cap G close paren
	Slide 33: Key ideas and Starter Sets
	Slide 34: Key ideas and Starter Sets
	Slide 35: The LL(1) condition
	Slide 36: LL(1) Condition
	Slide 37: LL(1) Condition
	Slide 38: Recursive Descent Parsing
	Slide 39: Recursive Descent Parsing
	Slide 40: Recursive Descent Parsing
	Slide 41: Recursive Descent Parsing
	Slide 42: Recursive Descent Parsing
	Slide 43: Enjoy your weekend!
	Slide 44: End
	Slide 45
	Slide 46
	Slide 47
	Slide 48

