
COMP 520 - Compilers

Lecture 03 – Compiler Theory and Formal 
Analysis
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Annoucements

PA1 autograder is live on Gradescope

Entry code: PWBK78

PA1 submission instructions posted on Piazza
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More Announcements

The autograder is built upon Gradescope’s recommendations.

The autograder does not accept filenames and folders that 
contain spaces (or tabs or other whitespace) in them.

(Your file can contain whitespace, but not the filename)

Please be cautious when uploading your source files to the 
autograder (name appropriately!)
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Good Questions!

• Lexer is responsible for building the language’s Lexicon

• Some languages require a more robust Lexer
• Recall C++ example from Lec02

• So what tokens are generated from the following?

6234432whileclass
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When to use the Graph method?

• Primarily if you need to prove that your TokenKind/TokenType
represents the CFG.

• Reducing the number of TokenTypes makes it easier on the Parser 
even if the types must be manually differentiated later when 
analyzing context/generating code. (And when that happens, it is 
usually still easier to have a condensed set of TokenTypes).

• But making things easier requires you to prove your method still 
adheres to the targeted language.
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What to expect

• Lecture01- Intro to the course, grading structure, expectations.

• Lecture02- Massive content drop, prepares you for PA1 as early as 
possible to give you time to complete the assignment.
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What to expect

• Lecture01- Intro to the course, grading structure, expectations.

• Lecture02- Massive content drop, prepares you for PA1 as early as 
possible to give you time to complete the assignment.

• From here on out, we can breathe a sigh of relief and slow down.

• We described what needs to be done in code but haven’t formally 
described how parsing is done.

• So now we can shift back towards the science part of compilers!
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Lecture03

Let’s get formal and describe Compilers in a way that 
cannot be misrepresented!
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Context-Free Grammar
A review, and new Compiler-specific definitions
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CFGs for Compilers

• The CFG, 𝐺, consists of:
• 𝑁: Set of nonterminal symbols (elements start with an uppercase)

• 𝑇: Set of terminal symbols (elements start lowercased)

• A start symbol where start ∈ 𝑁
• A set of rewrite rules of the form A ::= α where

• A ∈ 𝑁

• α is a sequence of T ∪ N or ε (empty sequence)
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Formal Definition Review

• The CFG, 𝐺, consists of:
• 𝑁: Set of nonterminal symbols (elements start with an uppercase)

• 𝑇: Set of terminal symbols (elements start lowercased)

• A start symbol where start ∈ 𝑁
• A set of rewrite rules of the form A ::= α where

• A ∈ 𝑁

• α is a sequence of 𝑇 ∪ 𝑁 or ε (empty sequence)

• (𝛼 sequence is a T∪N of fun to parse!)

• PAUSE!
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Sentence Definition

• A sentence 𝑤 consists exclusively of terminal symbols

• Consider a start symbol 𝑆 where 𝑆 = 𝛼1

• We will say that 𝛼𝑖 ⇒ 𝛼𝑖+1 (𝛼𝑖 yields 𝛼𝑖+1) if…
• When W ::= 𝜔 is a rule in 𝐺

• When 𝛽, 𝛾, 𝜔 (beta, gamma, omega) are sequences
𝑎𝑖 ⇒ 𝛼𝑖+1 → (𝛼𝑖 = 𝛽W𝛾) ∧ (𝛼𝑖+1 = 𝛽𝜔𝛾)
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Sentence Definition

• A sentence 𝑤 consists exclusively of terminal symbols

• Consider a start symbol 𝑆 where 𝑆 = 𝛼1

• We will say that 𝛼𝑖 ⇒ 𝛼𝑖+1 (𝛼𝑖 yields 𝛼𝑖+1) if…
• When W ::= 𝜔 is a rule in 𝐺

• When 𝛽, 𝛾, 𝜔 (beta, gamma, omega) are sequences
𝑎𝑖 ⇒ 𝛼𝑖+1 → (𝛼𝑖 = 𝛽W𝛾) ∧ (𝛼𝑖+1 = 𝛽𝜔𝛾)

• The sentence 𝑤 is generated when
• 𝛼1 ⇒ 𝛼2 ⇒ ⋯ ⇒ 𝛼𝑛 where 𝛼𝑛 = 𝑤
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Context-Free Language

• L(G) is the set of ALL sentences generated by G
𝐿 𝐺 = {𝑤|𝑤 ∈ 𝑇∗ and 𝑆 ⇒ 𝑤}
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Context-Free Language

• L(G) is the set of ALL sentences generated by G
𝐿 𝐺 = {𝑤|𝑤 ∈ 𝑇∗ and 𝑆 ⇒ 𝑤}

• Example: What sentences are generated by this CFG?

S ::= A $

A ::= ( A )

A ::= x

(Terminals are in orange)
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Leftmost Derivation
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Leftmost Derivation

• Leftmost derivation can generate any sentence in L(G)

• Only modify our sentence generation rules slightly.

• We will say that 𝛼𝑖 ⇒ 𝛼𝑖+1 if…
• When W ::= 𝜔 is a rule in 𝐺

• When 𝛽, 𝛾, 𝜔 (beta, gamma, omega) are sequences

• Additional Rule: 𝛽 consists of zero or more terminal symbols

𝑎𝑖 ⇒ 𝛼𝑖+1 → (𝛼𝑖 = 𝛽W𝛾) ∧ (𝛼𝑖+1 = 𝛽𝜔𝛾)
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Let’s simulate top-down parsing 
using a pushdown automaton 
and leftmost derivation!
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Top-down Parsing

• A top-down parser simulates leftmost derivation!

• Create a parse stack that contains the start symbol S:
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Top-down Parsing

Create a parse stack that contains the start symbol S:

1) Read the input, w, left-to-right

20
COMP 520: Compilers – Jan Prins, S. Ali

S

( ( x ) ) $
Input

Parse 
Stack



Top-down Parsing

1) Read the input, w, left-to-right

2) If the top of the parse stack is a
terminal 𝑏, pop 𝑏 from the stack
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Top-down Parsing

1) Read the input, w, left-to-right

2) If the top of the parse stack is a
terminal b, pop b from the stack

3) If the top is a non-terminal..
- Need to predict the correct rule A ::= 𝛼 from 𝐺

- Pop A and push 𝛼
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Top-down Parsing

• Create a parse stack that contains the start symbol S:

1) Read the input, w, left-to-right

2) If the top of the parse stack is a
terminal 𝑏, pop 𝑏 from the stack

3) If the top is a non-terminal..
- Need to predict the correct rule A ::= 𝛼 from 𝐺

- Pop A and push 𝛼

4) Repeat until parse stack is empty
or the input is exhausted

23
COMP 520: Compilers – Jan Prins, S. Ali

S

( ( x ) ) $
Input

Parse 
Stack



What does this look like in 
practice?
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Top-down Parsing
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A ::= x

Rules



Top-down Parsing
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Top-down Parsing
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Top-down Parsing
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Top-down Parsing
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(
( ( x ) ) $

Input

Parse 
Stack

Done reading (
Repeat…

Parser

S ::= A $
A ::= ( A )
A ::= x

Rules

$

A

)

(
POP!



Final Rule

Input 𝑤 ∈ 𝐿 𝐺 if

the stack is _____

(and/or)

the input is ______
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Final Rule

Input 𝑤 ∈ 𝐿 𝐺 if

the stack is EMPTY

AND

the input is EXHAUSTED
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Full Example when w=(x)$ and w ∈ 𝐿(𝐺)

32
COMP 520: Compilers – Jan Prins



Key ideas and Starter Sets

• Resolve choices in grammar rules by looking at the next symbol(s)
• A ::= ( A )

• A ::= x

• Two choices for A. Which terminals appear at the start of each 
choice?
• Starters of ( A ) = { ( }

• Starters of    x = { x }
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Key ideas and Starter Sets

• Resolve choices in grammar rules by looking at the next symbol(s)
• A ::= ( A )
• A ::= x

• Two choices for A. Which terminals appear at the start of each 
choice?
• Starters of ( A ) = { ( }
• Starters of    x = { x }

• Formally: when the starters are disjoint, we can always resolve the 
choice by looking at the next input symbol
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The LL(1) condition
Your new best friend!
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LL(1) Condition

• Guarantees that the parser can ALWAYS predict the correct 
rule based on…
• The next (1) symbol

• When reading Left to right

• Using Leftmost derviation
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LL(1) Condition

• Guarantees that the parser can ALWAYS predict the correct 
rule based on…
• The next (1) symbol

• When reading Left to right

• Using Leftmost derviation

• If your CFG is LL(1), you will make your compiler developer 
quite happy.

• Question: Why?
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Recursive Descent Parsing
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Recursive Descent Parsing

• Implementation uses a lot of recursion!

• Each non-terminal gets a parseN() method where N is a non-terminal.
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Recursive Descent Parsing

• Question: Where is the parse stack automatically maintained in 
recursive descent parsing?
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Recursive Descent Parsing

• Once again, 𝑤 ∈ 𝐿 𝐺 if
• Parse stack is empty AND w is exhausted

• Also explains why exception handling is useful here, it helps unwind 
the stack to ensure your program can recover from syntax errors.
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Recursive Descent Parsing

• PA1 starter code lightly enforces this style (easy to change)

• Note: You do not have to do recursive descent (i.e., you can do the 
PDA example from earlier)

• We recommend recursive descent parsing
• (A little easier to work with on your first compiler)

• True or False: any recursive algorithm can be rewritten as a non-
recursive algorithm? If so, what would that be for recursive descent?
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Enjoy your weekend!

• Make sure to start on PA1

• If you weren’t doing anything fun, something super exciting you 
can work on:

Think about whether Java, miniJava, or other languages are LL(1)

• Apologies if I took over your weekend plans with the exciting prospect 
above, parse responsibly!

• Next week: Grammar transformations, ENBF, and cool properties we 
can exploit.
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End
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